martes, 9 de junio de 2009
analog signals
WAN
LAN
ARCNET, Token Ring and many other technologies have been used in the past, and G.hn may be used in the future, but Ethernet over unshielded twisted pair cabling, and Wi-Fi are the two most common technologies currently in use.
Network hub

Network switch

The term commonly refers to a Network bridge that processes and routes data at the Data link layer (layer 2) of the OSI model. Switches that additionally process data at the Network layer (layer 3 and above) are often referred to as Layer 3 switches or Multilayer switches.
The term network switch does not generally encompass unintelligent or passive network devices such as hubs and repeaters.
Optic fiber

Network server
Network card

Modem

HDTV

Digital signal

Coaxial cable

Internet

The Internet carries a vast array of information resources and services, most notably, the inter-linked hypertext documents of the World Wide Web (WWW) and the infrastructure to support electronic mail, in addition to popular services such as online chat, file transfer and file sharing, online gaming, and Voice over Internet Protocol (VoIP) person-to-person communication via voice and video.
WIFI

The term Wi-Fi is often used by the public as a synonym for wireless LAN (WLAN); but not every wireless LAN product has a Wi-Fi certification, which may be because of certification costs that must be paid for each certified device type.
Wi-Fi is supported by most personal computer operating systems, many game consoles, laptops, smartphones, printers, and other peripherals.
CPU
A central processing unit (CPU) or processor is an electronic circuit that can execute computer programs. This topic has been in use in the computer industry at least since the early 1960s (Weik 1961). The form, design and implementation of CPUs have changed dramatically since the earliest examples, but their fundamental operation has remained much the same.
Early CPUs were custom-designed as a part of a larger, sometimes one-of-a-kind, computer. However, this costly method of designing custom CPUs for a particular application has largely given way to the development of mass-produced processors that are made for one or many purposes. This standardization trend generally began in the era of discrete transistor mainframes and minicomputers and has rapidly accelerated with the popularization of the integrated circuit (IC). The IC has allowed increasingly complex CPUs to be designed and manufactured to tolerances on the order of nanometers. Both the miniaturization and standardization of CPUs have increased the presence of these digital devices in modern life far beyond the limited application of dedicated computing machines. Modern microprocessors appear in everything from automobiles to cell phones to children's toys.